7 - NÚMEROS FRACIONARIOS E DECIMAIS
NÚMEROS FRACIONÁRIOS E DECIMAIS
Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos.
Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.
Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b
Chamamos o símbolo a/b de fração.
Assim, a fração 10/2 é igual a 10 : 2
Na fração a/b, a é o numerador e b é o denominador
Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.
Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.
Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.
Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?
Dividindo o chocolate em 4 partes, iguais temos;
Agenor comeu ¾ , portanto sobrou ¼
LEITURA DE UMA FRAÇÃO
Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9
½ um meio
¼ um quarto
1/6 um sexto
1/8 um oitavo
2/5 dois quintos
9/8 nove oitavos
1/3 um terço
1/5 um quinto
1/7 um sétimo
1/9 um nono
4/9 quatro nonos
16/9 dezesseis nonos
as que tem denominadores 10, 100, 1000, etc.............
1/10 um décimo
1/100 um centésimo
1/1000 um milésimo
7/100 sete centésimos
as decimais que são lidas acompanhadas da palavra avos :
1/11 um onze avos
7/120 sete cento e vinte avos
4/13 quatro treze avos
1/300 um trezentos avos
5/19 cinco dezenove avos
6/220 seis duzentos e vinte avos
EXERCÍCIOS
1) indique as divisões em forma de fração:
a) 14 : 7 = (R: 14/7)
b) 18 : 8 = (R: 18/8)
c) 5 : 1 = (R: 5/1)
d) 15 : 5 = ( R: 15/5)
e) 18 : 9 = (R: 18/9)
f) 64 : 8 = (R: 64/8)
2) Calcule o quociente das divisões
a) 12/3 = (R:4)
b) 42/21 = (R: 2)
c) 8/4 = (R: 2)
d) 100/10 = (R: 10)
e) 56/7 = (R: 8)
f) 64/8 = (R: 8 )
3) Em uma fração, o numerador é 5 e o denominador é 6
a) Em quantas partes o todo foi dividido? (R: 6)
b) Quantas partes do todo foram consideradas? (R: 5)
4) Escreva como se lêem as seguintes frações:
a) 5/8 (R: cinco oitavos)
b) 9/10 (R: nove décimos)
c) 1/5 (R: um quinto)
d) 4/200 ( R: quatro duzentos avos)
e) 7/1000 (R: sete milésimos)
f) 6/32 (R: seis trinta e dois avos)
TIPOS DE FRAÇÕES
a) Fração própria : é aquela cujo o numerador é menor que o denominador.
Exemplos : 2/3, 4/7, 1/8
b) Fração imprópria: é a fração cujo numerador é maior ou igual ao denominador
Exemplo: 3/2, 5/5
c) Fração aparente: é a fração imprópria cujo o numerador é múltiplo do denominador
Exemplo: 6/2, 19/19, 24/12, 7/7
EXERCÍCIO
1) Classifique as frações em própria, imprópria ou aparente:
a) 8/9 (R: própria)
b) 10/10 (R: imprópria e aparente)
c) 26/13(R: imprópria e aparente)
d) 10/20 (R: própria)
e) 37/19 (R: imprópria)
f) 100/400 (R: própria)
FRAÇÕES EQUIVALENTES
Para encontrar frações equivalentes, multiplicamos o numerador e o denominador da fração ½ por um mesmo numero natural diferente de zero.
Assim: ½, 2/4, 4/8, 3/6, 5/10 são algumas frações equivalentes a 1/2
SIMPLIFICANDO FRAÇÕES
Cláudio dividiu a pizza em 8 partes iguais e comeu 4 partes. Que fração da pizza ele comeu?
Cláudio comeu 4/8 da pizza. Mas 4/8 é equivalente a 2/4. Assim podemos dizer que Cláudio comeu 2/4 da pizza.
A fração 2/4 foi obtida dividindo-se ambos os termos da fração 4/8 por 2 veja:
4/8 : 2/2 = 2/4
Dizemos que a fração 2/4 é uma fração simplificada de 4/8.
A fração 2/4 ainda pode ser simplificada, ou seja, podemos obter uma fração equivalente dividindo os dois termos da fração por 2 e vamos obter ½
OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (FRAÇÕES)
ADIÇÃO E SUBTRAÇÃO
1°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores iguais
Conclusão: Somamos os numeradores e conservamos o denominador comum.
Exemplo:
a) 5/7 – 2/7 = 3/7
b) 4/9+ + 2/9 = 6/9 = 2/3
c) 3/5 – 1/5 = 2/5
Exercícios
1) Efetue as adições
a) 3/6 + 2/6 = (R: 5/6)
b) 13/7 + 1/7 = (R: 14/7)
c) 2/7+ 1/7 + 5/7 = (R: 8/7)
d) 4/10 + 1/10 + 3/10 = (R: 8/10)
e) 5/6 + 1/6 = (R: 1)
f) 8/6 + 6/6 = (R: 14/6) = (R: 7/3)
g) 3/5 + 1/5 = (R: 4/5)
2) Efetue as subtrações:
a) 7/9 – 5/9 = (R: 2/9)
b) 9/5 -2/5 = (R: 7/5)
c) 2/3 – 1/3 = (R: 1/3)
d) 8/3 – 2/3 = (R: 6/3)
e) 5/6 – 1/6 = (R: 2/3)
f) 5/5 – 2/5 = (R: 3/5)
g) 5/7 – 2/7 = (R: 3/7)
3) Efetue as operações:
a) 5/4 + ¾ - ¼ = (R: 7/4)
b) 2/5 + 1/5 – 3/5 = (R: 0/5)
c) 8/7 – 3/7 + 1/7 = (R: 6/7)
d) 7/3 – 4/3 – 1/3 = (R: 2/3)
e) 1/8 + 9/8 -3/8= (R: 7/8)
f) 7/3 – 2/3 + 1/3 = (R:6/3 ) = (R: 2)
g) 7/5 + 2/5 – 1/5 = (R: 8/5)
h) 5/7 – 2/7 – 1/7 = (R: 2/7)
2°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores diferentes
conclusão: Quando os denominadores são diferentes fazemos o m.m.c. dos denominadores .
exemplo:
a) 2/3 +1/2 = 4/6 + 3/6 = 7/6
3, 2 I 2
3, 1 I 3
1, 1 I ---2 . 3 = 6
b) 2/3 – ¼ = 8/12 – 3/12 = 5/12
3, 4 I 2
3, 2 I 2
3, 1 I 3
1, 1 I ----2 . 2. 3 = 12
exercícios
1) Efetue as adições:
a) 1/3 + 1/5 = (R: 8/15)
b) ¾ + ½ = (R: 5/4)
c) 2/4 + 2/3 = (R: 14/12)
d) 2/5 + 3/10 = (R: 7/10)
e) 5/3 + 1/6 = (R: 11/6)
f) ¼ + 2/3 + ½ = (R: 17/12)
g) ½ + 1/7 + 5/7 = (R: 19/14)
h) 3/7 + 5/2 + 1/14 = (R: 42/14)
i) 4/5 + 1/3 + 7/6 = (R: 69/30)
j) 1/3 + 5/6 + ¾ = (R: 23/12)
k) ½ + 1/3 + 1/6 = (R: 1)
l) 10 + 1/8 + ¾ = (R: 85/8)
m) 1/3 + 3/5 = (R:14/15)
n) ¾ + 6/7 = (R: 45/28)
o) 5/7 + ½ = (R: 17/14)
p) ½ + 1/3 = (R: 5/6)
q) 3/14 + 3/7 = (R: 9/14)
r) 3/5 + ¾ + ½ = (R: 37/20)
s) 1/12 + 5/6 + ¾ = (R: 20/12)
t) 8 + 1/5 + 4/5 = (R: 45/5)
u)
2) efetue as subtrações
a) 5/4 – ½ = (R: 3/4)
b) 3/5 – 2/7 = (R: 11/35)
c) 8/10 – 1/5 = (R: 6/10)
d) 5/6 – 2/3 = (R: 1/6)
e) 4/3 – ½ = (R: 5/6)
f) 13/4 – 5/6 = (R: 29/12)
g) 7/8 – 1/6 = (R: 17/24)
h) 4/5 – 1/3 = (R: 7/15)
i) 3/5 – ¼ = (R: 7/20)
j) 10/11 – ½ = (R: 9/22)
l) 6/4 – 2/3 = (R: 10/12)
m) 5/8 – ½ = (R: 1/8)
n) 4/5 – ¼ = (R: 11/20)
o) ¾ - 5/8 = (R: 1/8)
p) 9/11 – ½ = (R: 7/22)
q) 7 – 2/3 = (R: 19/3)
r) 4/2 - 2/3 = (R: 8/6)
s) 3/2 - 2/3 = (R: 5/6)
t) 1/2 - 1/3 = (R: 1/6)
u) 3/2 - 1/4 = (R: 5/4)
3) Efetue
a) 2 + 5/3 = (R: 11/3)
b) 7 + ½ = (R: 15/2)
c) 3/5 + 4 = (R: 23/5)
d) 6/7 + 1 = (R: 13/7)
e) 8 + 7/9 = (R: 79/9)
f) 5 – ¾ = (R: 17/4)
g) 2 – ½ = (R: 3/2)
h) 7/2 – 3 = (R: 1/2)
i) 11/2 – 3 = (R: 5/2)
j) 7/4 – 1 = (R: 3/4)
k) 1 – ¼ = (R: ¾ )
l) ½ - 1/3 = (R: 1/6)
m) ½ + ¼ = (R: ¾)
n) 1 + 1/5 = (R: 6/5)
o) 1 – 1/5 = (R: 4/5)
4) Calcule o valor das expressões:
a) 3/5 + ½ - 2/4 = (R: 12/20)
b) 2/3 + 5/6 – ¼ = (R: 15/12)
c) 4/5 – ½ + ¾ = (R: 21/20)
d) 5/7 – 1/3 + ½ = (R: 37/42)
e) 1/3 + ½ - ¼ = (R: 7/12)
f) ¾ - ½ + 1/3 = (R: 7/12)
g) 5/6 – ½ + 2/3 = (R: 1)
h) 4/5 – ¾ + ½ = (R: 11/20)
i) ½ + 2/3 + 2/5 + 1/3 = (R: 57/30)
j) 6/5 – ¾ + ½ - 2/3 = (R: 17/60)
l) 1/6 + 5/4 + 2/3 = (R: 25/12)
MULTIPLICAÇÃO
Vamos Calcular : 2/3 x 4/5 = 8/15
Conclusão : multiplicamos os numeradores entre si e os denominadores entre si
Exemplo:
a) 4/7 x 3/5 = 12/35
b) 5/6 x 3/7 = 15//42 = 5/14 simplificando
EXERCICIOS
1) Efetue as multiplicações
a) ½ x 8/8 = (R: 8/16)
b) 4/7 x 2/5 = (R: 8/35)
c) 5/3 x 2/7 = (R: 10/21)
d) 3/7 x 1/5 = (R: 3/35)
e) 1/8 x 1/9 = (R: 1/72)
f) 7/5 x 2/3 = (R: 14/15)
g) 3/5 x ½ = (R: 3/10)
h) 7/8 x 3/2 = (R: 21/16)
i) 1/3 x 5/6 = (R: 5/18)
j) 2/5 x 8/7 = (R: 16/35)
k) 7/6 x 7/6 = (R: 49/36)
l) 3/7 x 5/2 = (R: 15/14)
m) 3/10 x 5/9 = (R: 15/90)
n) 2/3 x ¼ x 5/2 = (R: 10/24)
o) 7 x ½ x 1/3 = (R: 7/6)
p)
2) Efetue as multiplicações
a) 4/3 x ½ x 2/5 = (R: 8/30)
b) 1/5 x ¾ x 5/3 = (R: 15/60)
c) ½ x 3/7 x 1/5 = (R: 3/70)
d) 3/2 x 5/8 x ¼ = (R: 15/64)
e) 5/4 x 1/3 x 4/7 = (R: 20/84)
3) Efetue as multiplicações
a) 2 x 5/3 = (R: 10/3)
b) 3 x 2/5 = (R: 6/5)
c) 1/8 x 5 = (R: 5/8)
d) 6/7 x 3 = (R: 18/7)
e) 2 x 2/3 x 1/7 = (R: 4/21)
f) 2/5 x 3 x 4/8 = (R: 24/40)
g) 5 x 2/3 x 7 = (R: 70/3)
h) 7/5 x 2 x 4 = (R: 56/5)
i) 8 x 2/3 = (R: 16/3)
j) 5/9 x 0/6 = (R: 0/54)
k) 1/7 x 40 = (R: 40/7)
l) ½ x 1/3 x ¼ x 1/5 = (R: 1/120)
m) 1 x 2/3 x 4/3 x 1/10 = (R: 8/90)
DIVISÃO
Vamos calcular ½ : 1/6
Para dividir uma fração por outra, basta multiplicar a primeira fração pela inversa da segunda
Assim: ½ : 1/6 = ½ x 6/1 = 6/2 = 3
Exemplos:
a) 2/3 : 5/2 = 2/3 x 2/5 = 4/15
b) 7/9 : 1/5 = 7/9 x 5/1 = 35//9
c) 3/7 : 4 = 3/7 x ¼ = 3/28
Exercícios
1) Efetue as divisões
a) ¾ : 2/5 = (R: 15/8)
b) 5/7 : 2/3 = (R: 15/14)
c) 4/5 : 3/7 = (R: 28/15)
d) 2/9 : 7/8 = (R: 16/63)
e) 1/6 : 5/3 = (R: 3/30) ou (3/10)
f) 7/8 : ¾ = (R: 28/24) ou (7/6)
g) 8/7 : 9/3 = (R: 24/63)
h) 4/5 : 2/5 = (R: 20/10) ou (2/1) ou ( 2)
i) 5/8 : ¾ = (R: 20/24) ou (5/6)
j) 2/9 : 4/7 = (R: 14/36) ou (7/18)
2) Efetue as divisões :
a) 5 : 2/3 = (R: 15/2)
b) 4 : 1/7 = (R: 28/1) ou (28)
c) 8/9 : 5 = (R: 8/45)
d) 3/7 : 3 = (R: 3/21)
e) 7/3 : 4/7 = (R: 49/12)
f) 2/3 : ½ = (R: 4/3)
g) 4/5 : 2/3 = (R: 12/10)
h) 2/7 : 5/3 = (R: 6/35)
i) 3/7 : 2 = (R: 3/14)
j) 3/2 : 5/7 = (R: 21/10)
k) 3/8 : 4/7 = (R: 21/32)
POTENCIAÇÃO
Vamos calcular a potência (2/5)³= 2/5 x 2/5 x 2/5 = 8/125
Conclusão: para elevar uma fração a um expoente, elevam-se o numerador e o denominador da fração desse expoente.
Exemplo
a) (5/7)² = 5²/ 7² = 25/49
1) Toda fração de expoente 1 dá como resultado a própria fração
Exemplo: (3/8)¹ = 3/8
2) Toda a fração elevada ao expoente zero dá como resultado o número 1
Exemplo : (3/4)⁰ = 1
Exercícios
1) Calcule as potências
a) (2/3)² = (R: 4/9)
b) (4/7)² = (R: 16/49)
c) (7/5)² = (R: 49/25)
d) (1/3)² = (R: 1/9)
e) (5/3)² = (R: 25/9)
f) (7/30)⁰ = ( R: 1)
g) (9/5)¹ = (R: 9/5)
h) (2/3)³ = (R: 8/27)
i) (1/5)³ = (R: 1/125)
j) (1/2)² = (R: 1/4)
k) (2/3)⁴= (R: 16/81)
l) (2/5)¹ = (R: 2/5)
m) (3/11)² = (R: 9/121)
n) (9/4)⁰ = (R: 1)
o) (12/13)² = (R: 144/169)
p) (1/2)⁵ = (R: 1/32)
q) (3/7)³ = ( R: 27/343)
RAIZ QUADRADA DE NÚMEROS RACIONAIS (FRAÇÃO)
Sabemos que :
√25 = 5
√49 = 7
√25/49 = 5/7
Conclusão:
Para extrair a raiz quadrada de um número fracionário, extraem-se a raiz quadrada do numerador e a raiz quadrada do denominador.
Exemplos
a) √4/9 = 2/3
b) √1/36 = 1/6
Exercícios
1) Calcule a raiz quadrada
a) √9/16 = (R: 3/4)
b) √1/25 = (R:1/5)
c) √9/25 = (R: 3/5)
d) √16/49 = (R: 4/7)
e) √64/25 = (R: 8/5)
f) √1/9 = (R: 1/3)
g) √25/81 = (R: 5/9)
h) √49/36 = (R: 7/6)
i) √1/100 = (R: 1/10)
EXPRESSÕES COM NÚMEROS RACIONAIS
As expressões com números racionais devem ser resolvidas obedecendo à seguinte ordem de operações:
1°) Potenciação e Radiciação
2°) Multiplicação e Divisão
3°) Adição e subtração
Essas operações são realizadas eliminando :
1°) Parênteses
2°) Colchetes
3°) Chaves
Exemplos:
1) 1/5 + 4/5 x 1/3 =
1/5 + 4/15 =
3/15 + 4/15 =
7/15
2) (3/5)² + 2/5 x ½ =
9/25 + 2/10 =
18/50 + 10/50 =
= 28/50 ou 14/25
3) ( 4 + ½ ) – 1/5 : 2/3 =
( 8/2 + ½ ) – 1/5 : 2/3 =
9/2 – 1/5 : 2/3 =
9/2 – 1/5 x 3/2 =
9/2 – 3/10 =
45/10 – 3/10 =
= 42/10 ou 21/5
Exercícios
1) Calcule o valor das expressões:
a) 5/8 + ½ -2/3 = (R: 11/24)
b) 5 + 1/3 -1/10 = (R: 157/30)
c) 7/8 – ½ - ¼ = (R: 1/8)
d) 2/3 + 3 + 1/10 = (R: 113/30)
e) ½ + 1/6 x 2/3 = (R: 11/18)
f) 3/10 + 4/5 : ½ = (R: 19/10)
g) 2/3 x ¾ - 1/6 = (R: 4/12 ou 1/3)
h) 7 – ¼ + 1/7 = (R: 193/28)
i) 3 x ½ - 4/5 = (R: 7/10)
j) 7/4 – ¼ x 3/2 = ( R: 11/8)
k) ½ + 3/2 x ½ = ( R: 5/4)
l) 1/10 + 2/3 x ½ = (R: 13/30)
2) Calcule o valor da expressão:
a) 7 x ½ + (4/5)² = (R: 207/50)
b) (1/3)² + 2/5 x ½ = (R: 28/90 ) ou (14/45)
c) (1/2)² : ¾ + 5/3 = ( R: 24/12) ou (2)
d) (1/3)² x 5/2 + ½ = ( R: 14/18) ou (7/9)
e) 2/5 x ½ + ( 3/5)² = ( R: 28/50) ou (14/25)
f) (2/3)²+ 4 + 1/3 -1/2 = ( R: 77/18)
3) Calcule o valor da expressão:
a) 5/6 – ( 1/3 + 1/5 ) = ( R: 9/30) ou (3/10)
b) 2/5 x ( ¾ + 5/8) = ( R: 22/40) ou (11/20)
c) ½ : ( 2/3 + ¾ ) = ( R: 12/34) ou ( 6/17)
d) ( 1/3 + ½ ) : 5/6 = (R: 30/30) ou (1)
e) ½ . ( 2/3 + ¾ ) = ( R: 17/24)
f) ( 5/7 x 2/3 ) : 1/6 = (R: 60/21)
g) (3/2 - 2/5 ) + ( 5/4 - 2/3) = (R: 101/60)
h) 1 + (1/2 - 1/5) - (7/4 - 5/4) = (R: 16/20)
i) ( 7/8 - 5/6) + ( 8/9 - 7/9) = (R: 11/72)
4) Calcule o valor das expressões
a) ( ¾ x ½ + 2/5 ) + ¼ = (R: 41/40)
b) ( 2/3 x ¼ ) + ( 1/3 x ½ ) = (R: 4/12)
c) ( 5- ½ ) : ( 2 – 1/3) = ( R: 27/10)
d) ( 3 x 5/2 ) : ( 1/5 + 1/3 ) = (R: 225/16)
e) ( 3 x ¾ ) + ( 3 x ¼ ) = ( R: 12/4)
f) ( 3 + ½ ) x 4/5 – 3/10 = (R: 25/10)
5) Calcule o valor das expressões
a) ½ : 1/3 + ¾ x 5/9 = ( R: 69/36)
b) 3/8 x ( ½ x 4/3 + 4/3 ) = (R: 36/48)
c) ( 1/3 + ¼ ) : 5/2 + 2/3 = (R: 54/60)
d) ( ¾ + ¼ - ½ ) : 3/2 = (R: 8/11)
d) ( 1 + 1/3 )² x 9/4 + 6 = (R: 360/36)
e) 1 + (3/2)² + ( 1 + ¼ ) = (R: 18/4)
6) calcule o valor das expressões
PROBLEMAS COM NÚMEROS RACIONAIS
Os problemas com números racionais absolutos são geralmente resolvidos da seguinte forma :
1°) Encontrando o valor de uma unidade fracionária
2°) obtendo o valor correspondente da fração solicitada
exemplo
Eu tenho 60 fichas, meu irmão tem ¾ dessa quantidade. Quantas fichas tem o meu irmão ?
60 x ¾ = 180/4 = 45
R: O meu irmão tem 45 fichas
EXERCICIOS
1) Determine 2/3 de R$ 1200,00 (R: 800)
2) Numa caixa existem 80 bombons. Calcule 2/5 desses bombons. (R: 32)
3) O comprimento de uma peça de tecido é de 42 metros. Quanto medem 3/7 dessa peça ? (R: 18 m)
4) Um automóvel percorreu 3/5 de uma estrada de 600 km. Quantos quilômetros percorreu? (R: 360 km)
5) Numa viagem de 72 km, já foram percorridos ¾ . Quantos quilômetros já foram percorridos? (R : 54 km)
6) Um livro tem 240 páginas., Você estudou 5/6 do livro. Quantas paginas você estudou? (R: 200)
7) Os 2/5 de um número correspondem a 80. Qual é esse número? (R: 200)
8) Os ¾ do que possuo equivalem a R$ 900,00. Quanto possuo? (R: 1200)
9) Um time de futebol marcou 35 gols, correspondendo a 7/15 do total de gols do campeonato. Quantos gols foram marcados no campeonato? (R: 75)
10) Para encher 1/5 de um reservatório são necessários 120 litros de água. Quanto é a capacidade desse reservatório? (R: 600 litros)
11) Se 2/9 de uma estrada corresponde a 60 km, quantos quilômetros tem essa estrada?
(R: 270 km)
12) Para revestir ¾ de uma parede foram empregados 150 azulejos. Quantos azulejos são necessários para revestir toda a parede? (R: 200)
13) De um total de 240 pessoas,1/8 não gosta de futebol. Quantas pessoas gostam de futebol?
(R: 210)
14) Eu fiz uma viagem de 700 km. Os 3/7 do percurso foram feitos de automóvel e o restante de ônibus. Que distancia eu percorri de ônibus? (R: 400 km)
15) Numa prova de 40 questões um aluno errou ¼ da prova. Quantas questões ele acertou?
(R: 30 )
16) Numa classe de 45 alunos, 3/5 são meninas. Quantos meninos há nessa classe? (R: 18)
17) Um brinquedo custou R$ 152,10,. Paguei 1/6 do valor desse objeto. Quanto estou devendo?
(R: 126,75)
NÚMEROS DECIMAIS
FRAÇÃO DECIMAL
Chama-se fração decimal toda fração cujo denominador é 10 ou potência de 10 ex 10, 100, 100...
como:
a) 7/10
b) 3/100
c) 27/1000
NÚMEROS DECIMAIS
a) 7/10 = 0,7
b) 3/100 = 0,03
c) 27/1000 = 0,027
nos números decimais , a virgula separa a parte inteira da parte decimal
LEITURA DO NÚMERO DECIMAL
Para ler um, número decimal, procedemos do seguinte modo:
1°) Lêem -se os inteiros
2°) Lê-se a parte decimal, seguida da palavra:
décimos - se houver uma casa decimal
centésimos - se houver duas casas decimais
milésimos - se houver três casas decimais
exemplos:
a) 5,3 - lê-se cinco inteiros e três décimos
b) 1,34 - lê-se um inteiro e trinta e quatro centésimos
c) 12,007 - lê-se doze inteiros e sete milésimos
quando a parte inteira for zero, lê-se apenas a parte decimal
a) 0,4 - lê-se quatro décimos
b) 0,38 - lê-se trinta e oito centésimos
TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL
Para transformar uma fração decimal em número decimal, escrevemos o numerador e separamos, à direita da virgula, tantas casas quanto são os zeros do denominador
exemplos:
a) 42/10 = 4,2
b) 135/100 = 1,35
c) 135/1000 = 0,135
Quando a quantidade de algarismos do numerador não for suficiente para colocar a vírgula, acrescentamos zeros à esquerda do número.
exemplo:
a) 29/1000 = 0,029
b) 7/1000 = 0,007
EXERCÍCIOS ,
1) transforme as frações em números decimais
a) 3/10 = (R: 0,3)
b) 45/10 = (R: 4,5)
c) 517/10 = (R:51,7)
d) 2138/10 = (R: 213,8)
e) 57/100 = (R: 0,57)
f) 348/100 = (R: 3,48)
g) 1634/100 = (R: 16,34)
h) 328/ 1000 = (R: 0,328)
i) 5114 / 1000 = (R: 5,114)
j) 2856/1000 = (R: 2,856)
l) 4761 / 10000 = (R: 0,4761)
m) 15238 /10000 = (R: 1,5238)
2) transforme as frações em números decimais
a) 9 / 100 = (R: 0,09)
b) 3 / 1000 = (R: 0,003)
c) 65 /1000 = (R: 0,065)
d) 47 /1000 = (R: 0,047)
e) 9 / 10000 = (R: 0,0009)
f) 14 / 10000 = (R: 0,0014)
TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO
Procedimentos:
1) O numerador é um número decimal sem a virgula
2) O denominador é o número 1 acompanhado de tantos zeros quantos forem os algarismos do número decimal depois da vírgula.
exemplos:
a) 0,7 = 7/10
b) 8,34 / 834 /100
0,005 = 5/ 1000
EXERCÍCIOS
1) Transforme os números decimais em frações
a) 0,4 = (R: 4/10)
b) 7,3 = (R: 73/10)
c) 4,29 = (R: 429/100)
d) 0,674 = (R: 674/1000)
e) 8,436 = (R: 8436/1000)
f) 69,37 = (R: 6937/100)
g) 15,3 = (R: 153/10)
h) 0,08 = (R: 8/100)
i) 0,013 = (R: 13/1000)
j) 34,09 = (R: 3409/100)
l) 7,016 = (R: 7016/1000)
m) 138,11 = (R: 13811/100)
OPERAÇÕES COM NÚMEROS DECIMAIS
ADIÇÃO E SUBTRAÇÃO
Colocamos vírgula debaixo de vírgula e operamos como se fossem números naturais>
exemplo
1) Efetuar 2,64 + 5,19
2,64
5,19 +
----
7,83
2) Efetuar 8,42 - 5,61
8,42
5,61 -
----
2,81
Se o número de casas depois da virgula for diferente, igualamos com zeros à direita
3) Efetuar 2,7 + 5 + 0,42
2,70
5,00 +
0,42
----
8,12
4) efetuar 4,2 - 2,53
4,20
2,53 -
------
1,67
EXERCÍCIOS
1) Calcule
a) 1 + 0,75 = (R: 1,75)
b) 0,8 + 0,5 = (R: 1,3)
c) 0,5 + 0,5 = (R: 1,0)
d) 2,5 + 0,5 + 0,7 = (R: 3,7)
e) 0,5 + 0,5 + 1,9 + 3,4 = (R:6,3)
f) 5 + 0,6 + 1,2 + 15,7 = (R: 22,5)
2) Efetue as adições
a) 3,5 + 0,12 = (R: 3,62)
b) 9,1 + 0,07 = (R: 9,17)
c) 4,7 + 12,01 = (R: 16,71)
d) 2,746 + 0,92 = (R: 3,666)
e) 6 + 0,013 = (R: 6,013)
f) 4 + 0,07 + 9,1 = (R: 13,17)
g) 16.,4 + 1,03 + 0,72 = (R: 18,15)
h) 5,3 + 8,2 + 0,048 = (R: 13,548)
i) 0,45 + 4,125 + 0,001 = (R: 4,576)
3) Efetue as subtrações
a) 8,2 - 1,7 = (R: 6,5)
b) 5 - 0,74 = (R: 4,26)
c) 4,92 - 0,48 = (R: 4,44)
d) 12,3 - 1,74 = (R: 10,56)
e) 3 - 0,889 = (R: 2,111)
f) 4,329 - 2 = (R: 2,329)
g) 15,8 - 9,81 = (R: 5,99)
h) 10,1 - 2,734 = (R: 7,366)
4) Calcule o valor das expressões
a) 5 - 1,3 + 2,7 = (R: 6,4)
b) 2,1 - 1,8 + 0,13 = (R: 0,43)
c) 17,3 + 0,47 - 8 = (R: 9,77)
d) 3,25 - 1,03 - 1,18 = (R: 1,04)
e) 12,3 + 6,1 - 10,44 = (R: 7,96)
f) 7 - 5,63 + 1,625 = (R: 2,995)
5) Calcule o valor das expressões
a) (1 + 0,4) - 0,6 = (R: 0,8)
b) 0,75 + ( 0,5 - 0,2 ) = (R: 1,05)
c) ( 5 - 3,5 ) - 0,42 = (R: 1,08)
d) 45 - ( 14,2 - 8,3 ) = (R: 39,1)
e) 12 + ( 15 - 10,456) = (R: 16,544)
f) 1,503 - ( 2,35 - 2,04) = (R: 1,193)
g) ( 3,8 - 1,6) - ( 6,2 - 5,02) = (R: 1,04)
h) ( 7 + 2,75 ) - ( 0,12 + 1,04) = (R: 8,59)
MULTIPLICAÇÃO DE NÚMEROS DECIMAIS
Multiplicamos os números decimais como se fossem números naturais. O números de casas decimais do produto é igual a soma do número de casas decimais dos fatores.
Exemplo
1) efetuar 2,45 x 3,2
2,46
x3,2
-----
7,872
2) efetuar 0,27 x 0,003
x0,27
0,003
-------
0,00081
EXERCÍCIOS
1) Efetue as multiplicações
a) 2 x 1,7= (R: 3,4)
b) 0,5 x 4 = (R: 2)
c) 0,5 x 7 = (R: 3,5)
d) 0,25 x 3 = (R: 0,75)
f) 6 x 3,21 = (R: 19,26)
2) Efetue as multiplicações
a) 5,7 x 1,4 = (R: 7,98)
b) 0,42 x 0,3 = (R: 0,126)
c) 7,14 x 2,3 = (R: 16,422)
d) 14,5 x 0,5 = (R: 7,25)
e) 13,2 x 0,16 = (R 2,112)
f) 7,04 x 5 = (R:35,2)
g) 21,8 x 0,32 = (R: 6,976)
h) 3,12 x 2,81 = (R: 8,7672)
i) 2,14 x 0,008 = (R: 0,01712)
j) 4,092 x 0,003 = (R: 0,012276)
3) Determine os seguintes produtos:
a) 0,5 x 0,5 x 0,5 = (R: 0,125)
b) 3 x 1,5 x 0,12 = (R: 0,54)
c) 5 x 0,24 x 0,1 = (R: 0,120)
d) 0,2 x 0,02 x 0,002 = (R: 0,000008)
e) 0,7 x 0,8 x 2,1 = (R: 1,176)
f) 3,2 x 0,1 x 1,7 = (R: 0,544)
4) calcule o valor das expressões
a) 3 x 2,5 - 1,5 = (R: 6)
b) 2 x 1,5 + 6 = (R: 9)
c) 3,5 x 4 - 0,8 = (R: 13,2)
d) 0,8 x 4 + 1,5 = (R: 4,7)
e) 2,9 x 5 - 8,01 = (R: 6,49)
f) 1,3 x 1,3 - 1,69 = (R: 0)
MULTIPLICAÇÃO POR POTENCIA DE 10
Para multiplicar por 10, 100, 1000, etc, basta deslocar a vírgula para a direita, uma, duas, três, etc casas decimais.
exemplos
a) 3,785 x 10 = 37,85
b) 3,785 x 100 = 378,5
c) 3,785 x 1000 = 3785
d) 0,0928 x 100 = 9,28
EXERCÍCIOS
1) Efetue as multiplicações:
a) 4,723 x 10 = (R: 47,23)
b) 8,296 x 100 = (R: 829,6)
c) 73,435 x 1000 = ( R: 73435)
d) 6,49 x 1000 = (R: 6490)
e) 0,478 x 100 = (R: 478)
f) 3,08 x 1000 = (R: 3080)
g) 0,7 x 1000 = (R: 700)
h) 0,5 x 10 = (R: 5)
i) 3,7 x 1000 = (R: 3700)
j) 0,046 x 10 = (R: 0,46)
DIVISÃO
Igualamos as casas decimais do dividendo e do divisor e dividimos como se fossem números naturais.
exemplos
1) efetuar 17,568 : 7,32
Igualando as casas decimais fica : 17568 : 7320 = 2,4
2) Efetuar 12,27 : 3
Igualando as casas decimais fica: 1227 : 300 = 4,09
exercícios
1) Efetuar as divisões:
a) 38,6 : 2 = (R: 19,3)
b) 7,6 : 1,9 = (R: 4)
c) 3,5 : 0,7 = (R: 5)
d) 17,92 : 5,6 = (R: 3,2)
e) 155 : 0,25 = ( R: 620)
f) 6,996 : 5,83 = (R: 1,2)
g) 9,576 : 5,32 = (R: 1,8)
h) 2,280 : 0,05 = (R: 45,6)
i) 1,24 : 0,004 = (R: 310)
j) 7,2624 : 2,136 = (R: 3,4)
2) Calcular o valor das expressões
a) 7,2 : 2,4 + 1,7 = (R: 4,7)
b) 2,1 + 6,8 : 2 = (R: 5,5 )
c) 6,9 : 3 - 0,71 = (R: 1,59)
d) 8,36 : 2 - 1,03 = (R: 3,15)
e) 1,6 : 4 - 0,12 = (R: 0,28)
f) 8,7 - 1,5 : 0,3 = (R: 3,7)
DIVISÃO POR POTÊNCIA DE 10
Para dividir por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda, uma, duas três , etc casas decimais.
exemplos
a) 379,4 : 10 = 37,94
b) 379,4 : 100 = 3,794
c) 379,4 : 1000 = 0,3794
d) 42,5 ; 1000 = 0,0425
EXERCÍCIOS
1) Efetuar as divisões
a) 3,84 : 10 = (R: 0,384)
b) 45,61 : 10 = (R: 4,561)
c) 182,9 : 10 = ( R: 18,29)
d) 274,5 : 100 = (R: 2,745)
e) 84,34 : 100 = (R: 0,8434)
f) 1634,2 : 100 = (R: 16,342)
g) 4781,9 : 1000 = ( R: 4,7819)
h) 0,012 : 100 = (R: 0,0012)
i) 0,07 : 10 = (R: 0,007)
j) 584,36 : 1000 = (R: 0,58436)
2) efetue as divisões
a) 72 : 10² = (R: 0,72)
b) 65 : 10³ = ( R: 0,065)
c) 7,198 : 10² = (R: 0,07198)
d) 123,45 : 10⁴= (R: 0,012345)
POTENCIAÇÃO
A potenciação é uma multiplicação de fatores iguais
Exemplos:
1) (1,5)² = 1,5 x 1,5 = 2,25
2) (0,4)³ = 0,4 x 0,4 x 0,4 = 0,064
vamos lembrar que: são válidas as convenções para os expoentes um e zero.
Exemplos
1) (7,53)¹ = 7,53
2) ( 2,85)⁰ = 1
EXERCÍCIOS
1) Calcule as potências
a) ( 0,7)² = (R: 0,49)
b) (0,3) ² = (R: 0,09)
c) (1,2) ² = (R: 1,44)
d) (2,5) ² = (R: 6,25)
e) (1,7) ² = (R: 2,89)
f) (8,4) ² = (R:70,56)
g) (1,1)³ = ( R: 1,331)
h) (0,1)³ = (R: 0,001)
i) (0,15) ² = (R:0,0225)
j) (0,2)⁴= (R: 0,0016)
2) Calcule o valor das expressões
a) (1,2)³ + 1,3 = (R:3,028)
b) 20 – (3,6) ² = (R: 7,04)
c) (0,2) ² + (0,8) ² = (R: 0,68)
d) (1,5) ² - (0,3) ² = (R: 0,2025)
e) 1 – (0,9) ² = (R: 0,19)
f) 100 x (0,1)⁴ = (R: 0,01)
g) 4² : 0,5 – (1,5) ² = (R: 30,5)
h) ( 1 – 0,7) ² + ( 7 – 6)⁵ = (R: 1,09)
TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS
Para transformar uma fração em números decimais, basta dividir o numerador pelo denominador (obs o numerador é o números de cima da fração e o denominador o números debaixo)
Exemplos
transformar em números decimais as frações irredutíveis
1) 5/4 = 5 : 4 = 1,25 que será um, número decimal exato
2) 7/9 = 7 : 9 = 0,777... é uma dizima periódica simples
3) 5/6 = 5: 6 = 0,8333...... é uma dizima periódica composta
outros exemplos
a) 4,666... dízima periódica simples (período 6)
b) 2,1818....dízima periódica simples ( período 18)
c) 0,3535.... dízima periódica simples (período 35)
d) 0,8777.... dízima periódica composta (período 7 e parte não periódica 8)
e) 5,413333.... dízima periódica composta (período 3 e parte não periódica 41)
EXERCÍCIOS
1) Transforme em números decimais as frações:
a) 10/4 = (R: 2,5)
b) 4/5 = (R: 0,8)
c) 1/3 = (R: 0,333)
d) 5/3 = (R: 1,666)
e) 14/5 = (R: 2,8)
f) 1/6 = (R: 0,16)
g) 2/11 = (R: 0,1818)
h) 43/99 = (R: 0,4343)
i) 8/3 = (R: 2,666)
2) Transforme as frações decimais em números decimais :
a) 9/10 = (R: 0,9)
b) 57/10 = (R: 5,7)
c) 815/10 = (R: 81,5)
d) 3/100 = (R: 0,03)
e) 74/100 = (R: 0,74)
f) 2357/1000 = (R: 2,357)
g) 7/1000 = (R: 0,007)
h) 15/10000 = (R: 0,0015)
i) 4782/10000 = (R: 0,4782)
GEOMETRIA INTUITIVA
Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos.
Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.
Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b
Chamamos o símbolo a/b de fração.
Assim, a fração 10/2 é igual a 10 : 2
Na fração a/b, a é o numerador e b é o denominador
Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.
Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.
Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.
Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?
Dividindo o chocolate em 4 partes, iguais temos;
Agenor comeu ¾ , portanto sobrou ¼
LEITURA DE UMA FRAÇÃO
Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9
½ um meio
¼ um quarto
1/6 um sexto
1/8 um oitavo
2/5 dois quintos
9/8 nove oitavos
1/3 um terço
1/5 um quinto
1/7 um sétimo
1/9 um nono
4/9 quatro nonos
16/9 dezesseis nonos
as que tem denominadores 10, 100, 1000, etc.............
1/10 um décimo
1/100 um centésimo
1/1000 um milésimo
7/100 sete centésimos
as decimais que são lidas acompanhadas da palavra avos :
1/11 um onze avos
7/120 sete cento e vinte avos
4/13 quatro treze avos
1/300 um trezentos avos
5/19 cinco dezenove avos
6/220 seis duzentos e vinte avos
EXERCÍCIOS
1) indique as divisões em forma de fração:
a) 14 : 7 = (R: 14/7)
b) 18 : 8 = (R: 18/8)
c) 5 : 1 = (R: 5/1)
d) 15 : 5 = ( R: 15/5)
e) 18 : 9 = (R: 18/9)
f) 64 : 8 = (R: 64/8)
2) Calcule o quociente das divisões
a) 12/3 = (R:4)
b) 42/21 = (R: 2)
c) 8/4 = (R: 2)
d) 100/10 = (R: 10)
e) 56/7 = (R: 8)
f) 64/8 = (R: 8 )
3) Em uma fração, o numerador é 5 e o denominador é 6
a) Em quantas partes o todo foi dividido? (R: 6)
b) Quantas partes do todo foram consideradas? (R: 5)
4) Escreva como se lêem as seguintes frações:
a) 5/8 (R: cinco oitavos)
b) 9/10 (R: nove décimos)
c) 1/5 (R: um quinto)
d) 4/200 ( R: quatro duzentos avos)
e) 7/1000 (R: sete milésimos)
f) 6/32 (R: seis trinta e dois avos)
TIPOS DE FRAÇÕES
a) Fração própria : é aquela cujo o numerador é menor que o denominador.
Exemplos : 2/3, 4/7, 1/8
b) Fração imprópria: é a fração cujo numerador é maior ou igual ao denominador
Exemplo: 3/2, 5/5
c) Fração aparente: é a fração imprópria cujo o numerador é múltiplo do denominador
Exemplo: 6/2, 19/19, 24/12, 7/7
EXERCÍCIO
1) Classifique as frações em própria, imprópria ou aparente:
a) 8/9 (R: própria)
b) 10/10 (R: imprópria e aparente)
c) 26/13(R: imprópria e aparente)
d) 10/20 (R: própria)
e) 37/19 (R: imprópria)
f) 100/400 (R: própria)
FRAÇÕES EQUIVALENTES
Para encontrar frações equivalentes, multiplicamos o numerador e o denominador da fração ½ por um mesmo numero natural diferente de zero.
Assim: ½, 2/4, 4/8, 3/6, 5/10 são algumas frações equivalentes a 1/2
SIMPLIFICANDO FRAÇÕES
Cláudio dividiu a pizza em 8 partes iguais e comeu 4 partes. Que fração da pizza ele comeu?
Cláudio comeu 4/8 da pizza. Mas 4/8 é equivalente a 2/4. Assim podemos dizer que Cláudio comeu 2/4 da pizza.
A fração 2/4 foi obtida dividindo-se ambos os termos da fração 4/8 por 2 veja:
4/8 : 2/2 = 2/4
Dizemos que a fração 2/4 é uma fração simplificada de 4/8.
A fração 2/4 ainda pode ser simplificada, ou seja, podemos obter uma fração equivalente dividindo os dois termos da fração por 2 e vamos obter ½
OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (FRAÇÕES)
ADIÇÃO E SUBTRAÇÃO
1°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores iguais
Conclusão: Somamos os numeradores e conservamos o denominador comum.
Exemplo:
a) 5/7 – 2/7 = 3/7
b) 4/9+ + 2/9 = 6/9 = 2/3
c) 3/5 – 1/5 = 2/5
Exercícios
1) Efetue as adições
a) 3/6 + 2/6 = (R: 5/6)
b) 13/7 + 1/7 = (R: 14/7)
c) 2/7+ 1/7 + 5/7 = (R: 8/7)
d) 4/10 + 1/10 + 3/10 = (R: 8/10)
e) 5/6 + 1/6 = (R: 1)
f) 8/6 + 6/6 = (R: 14/6) = (R: 7/3)
g) 3/5 + 1/5 = (R: 4/5)
2) Efetue as subtrações:
a) 7/9 – 5/9 = (R: 2/9)
b) 9/5 -2/5 = (R: 7/5)
c) 2/3 – 1/3 = (R: 1/3)
d) 8/3 – 2/3 = (R: 6/3)
e) 5/6 – 1/6 = (R: 2/3)
f) 5/5 – 2/5 = (R: 3/5)
g) 5/7 – 2/7 = (R: 3/7)
3) Efetue as operações:
a) 5/4 + ¾ - ¼ = (R: 7/4)
b) 2/5 + 1/5 – 3/5 = (R: 0/5)
c) 8/7 – 3/7 + 1/7 = (R: 6/7)
d) 7/3 – 4/3 – 1/3 = (R: 2/3)
e) 1/8 + 9/8 -3/8= (R: 7/8)
f) 7/3 – 2/3 + 1/3 = (R:6/3 ) = (R: 2)
g) 7/5 + 2/5 – 1/5 = (R: 8/5)
h) 5/7 – 2/7 – 1/7 = (R: 2/7)
2°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores diferentes
conclusão: Quando os denominadores são diferentes fazemos o m.m.c. dos denominadores .
exemplo:
a) 2/3 +1/2 = 4/6 + 3/6 = 7/6
3, 2 I 2
3, 1 I 3
1, 1 I ---2 . 3 = 6
b) 2/3 – ¼ = 8/12 – 3/12 = 5/12
3, 4 I 2
3, 2 I 2
3, 1 I 3
1, 1 I ----2 . 2. 3 = 12
exercícios
1) Efetue as adições:
a) 1/3 + 1/5 = (R: 8/15)
b) ¾ + ½ = (R: 5/4)
c) 2/4 + 2/3 = (R: 14/12)
d) 2/5 + 3/10 = (R: 7/10)
e) 5/3 + 1/6 = (R: 11/6)
f) ¼ + 2/3 + ½ = (R: 17/12)
g) ½ + 1/7 + 5/7 = (R: 19/14)
h) 3/7 + 5/2 + 1/14 = (R: 42/14)
i) 4/5 + 1/3 + 7/6 = (R: 69/30)
j) 1/3 + 5/6 + ¾ = (R: 23/12)
k) ½ + 1/3 + 1/6 = (R: 1)
l) 10 + 1/8 + ¾ = (R: 85/8)
m) 1/3 + 3/5 = (R:14/15)
n) ¾ + 6/7 = (R: 45/28)
o) 5/7 + ½ = (R: 17/14)
p) ½ + 1/3 = (R: 5/6)
q) 3/14 + 3/7 = (R: 9/14)
r) 3/5 + ¾ + ½ = (R: 37/20)
s) 1/12 + 5/6 + ¾ = (R: 20/12)
t) 8 + 1/5 + 4/5 = (R: 45/5)
u)
2) efetue as subtrações
a) 5/4 – ½ = (R: 3/4)
b) 3/5 – 2/7 = (R: 11/35)
c) 8/10 – 1/5 = (R: 6/10)
d) 5/6 – 2/3 = (R: 1/6)
e) 4/3 – ½ = (R: 5/6)
f) 13/4 – 5/6 = (R: 29/12)
g) 7/8 – 1/6 = (R: 17/24)
h) 4/5 – 1/3 = (R: 7/15)
i) 3/5 – ¼ = (R: 7/20)
j) 10/11 – ½ = (R: 9/22)
l) 6/4 – 2/3 = (R: 10/12)
m) 5/8 – ½ = (R: 1/8)
n) 4/5 – ¼ = (R: 11/20)
o) ¾ - 5/8 = (R: 1/8)
p) 9/11 – ½ = (R: 7/22)
q) 7 – 2/3 = (R: 19/3)
r) 4/2 - 2/3 = (R: 8/6)
s) 3/2 - 2/3 = (R: 5/6)
t) 1/2 - 1/3 = (R: 1/6)
u) 3/2 - 1/4 = (R: 5/4)
3) Efetue
a) 2 + 5/3 = (R: 11/3)
b) 7 + ½ = (R: 15/2)
c) 3/5 + 4 = (R: 23/5)
d) 6/7 + 1 = (R: 13/7)
e) 8 + 7/9 = (R: 79/9)
f) 5 – ¾ = (R: 17/4)
g) 2 – ½ = (R: 3/2)
h) 7/2 – 3 = (R: 1/2)
i) 11/2 – 3 = (R: 5/2)
j) 7/4 – 1 = (R: 3/4)
k) 1 – ¼ = (R: ¾ )
l) ½ - 1/3 = (R: 1/6)
m) ½ + ¼ = (R: ¾)
n) 1 + 1/5 = (R: 6/5)
o) 1 – 1/5 = (R: 4/5)
4) Calcule o valor das expressões:
a) 3/5 + ½ - 2/4 = (R: 12/20)
b) 2/3 + 5/6 – ¼ = (R: 15/12)
c) 4/5 – ½ + ¾ = (R: 21/20)
d) 5/7 – 1/3 + ½ = (R: 37/42)
e) 1/3 + ½ - ¼ = (R: 7/12)
f) ¾ - ½ + 1/3 = (R: 7/12)
g) 5/6 – ½ + 2/3 = (R: 1)
h) 4/5 – ¾ + ½ = (R: 11/20)
i) ½ + 2/3 + 2/5 + 1/3 = (R: 57/30)
j) 6/5 – ¾ + ½ - 2/3 = (R: 17/60)
l) 1/6 + 5/4 + 2/3 = (R: 25/12)
MULTIPLICAÇÃO
Vamos Calcular : 2/3 x 4/5 = 8/15
Conclusão : multiplicamos os numeradores entre si e os denominadores entre si
Exemplo:
a) 4/7 x 3/5 = 12/35
b) 5/6 x 3/7 = 15//42 = 5/14 simplificando
EXERCICIOS
1) Efetue as multiplicações
a) ½ x 8/8 = (R: 8/16)
b) 4/7 x 2/5 = (R: 8/35)
c) 5/3 x 2/7 = (R: 10/21)
d) 3/7 x 1/5 = (R: 3/35)
e) 1/8 x 1/9 = (R: 1/72)
f) 7/5 x 2/3 = (R: 14/15)
g) 3/5 x ½ = (R: 3/10)
h) 7/8 x 3/2 = (R: 21/16)
i) 1/3 x 5/6 = (R: 5/18)
j) 2/5 x 8/7 = (R: 16/35)
k) 7/6 x 7/6 = (R: 49/36)
l) 3/7 x 5/2 = (R: 15/14)
m) 3/10 x 5/9 = (R: 15/90)
n) 2/3 x ¼ x 5/2 = (R: 10/24)
o) 7 x ½ x 1/3 = (R: 7/6)
p)
2) Efetue as multiplicações
a) 4/3 x ½ x 2/5 = (R: 8/30)
b) 1/5 x ¾ x 5/3 = (R: 15/60)
c) ½ x 3/7 x 1/5 = (R: 3/70)
d) 3/2 x 5/8 x ¼ = (R: 15/64)
e) 5/4 x 1/3 x 4/7 = (R: 20/84)
3) Efetue as multiplicações
a) 2 x 5/3 = (R: 10/3)
b) 3 x 2/5 = (R: 6/5)
c) 1/8 x 5 = (R: 5/8)
d) 6/7 x 3 = (R: 18/7)
e) 2 x 2/3 x 1/7 = (R: 4/21)
f) 2/5 x 3 x 4/8 = (R: 24/40)
g) 5 x 2/3 x 7 = (R: 70/3)
h) 7/5 x 2 x 4 = (R: 56/5)
i) 8 x 2/3 = (R: 16/3)
j) 5/9 x 0/6 = (R: 0/54)
k) 1/7 x 40 = (R: 40/7)
l) ½ x 1/3 x ¼ x 1/5 = (R: 1/120)
m) 1 x 2/3 x 4/3 x 1/10 = (R: 8/90)
DIVISÃO
Vamos calcular ½ : 1/6
Para dividir uma fração por outra, basta multiplicar a primeira fração pela inversa da segunda
Assim: ½ : 1/6 = ½ x 6/1 = 6/2 = 3
Exemplos:
a) 2/3 : 5/2 = 2/3 x 2/5 = 4/15
b) 7/9 : 1/5 = 7/9 x 5/1 = 35//9
c) 3/7 : 4 = 3/7 x ¼ = 3/28
Exercícios
1) Efetue as divisões
a) ¾ : 2/5 = (R: 15/8)
b) 5/7 : 2/3 = (R: 15/14)
c) 4/5 : 3/7 = (R: 28/15)
d) 2/9 : 7/8 = (R: 16/63)
e) 1/6 : 5/3 = (R: 3/30) ou (3/10)
f) 7/8 : ¾ = (R: 28/24) ou (7/6)
g) 8/7 : 9/3 = (R: 24/63)
h) 4/5 : 2/5 = (R: 20/10) ou (2/1) ou ( 2)
i) 5/8 : ¾ = (R: 20/24) ou (5/6)
j) 2/9 : 4/7 = (R: 14/36) ou (7/18)
2) Efetue as divisões :
a) 5 : 2/3 = (R: 15/2)
b) 4 : 1/7 = (R: 28/1) ou (28)
c) 8/9 : 5 = (R: 8/45)
d) 3/7 : 3 = (R: 3/21)
e) 7/3 : 4/7 = (R: 49/12)
f) 2/3 : ½ = (R: 4/3)
g) 4/5 : 2/3 = (R: 12/10)
h) 2/7 : 5/3 = (R: 6/35)
i) 3/7 : 2 = (R: 3/14)
j) 3/2 : 5/7 = (R: 21/10)
k) 3/8 : 4/7 = (R: 21/32)
POTENCIAÇÃO
Vamos calcular a potência (2/5)³= 2/5 x 2/5 x 2/5 = 8/125
Conclusão: para elevar uma fração a um expoente, elevam-se o numerador e o denominador da fração desse expoente.
Exemplo
a) (5/7)² = 5²/ 7² = 25/49
1) Toda fração de expoente 1 dá como resultado a própria fração
Exemplo: (3/8)¹ = 3/8
2) Toda a fração elevada ao expoente zero dá como resultado o número 1
Exemplo : (3/4)⁰ = 1
Exercícios
1) Calcule as potências
a) (2/3)² = (R: 4/9)
b) (4/7)² = (R: 16/49)
c) (7/5)² = (R: 49/25)
d) (1/3)² = (R: 1/9)
e) (5/3)² = (R: 25/9)
f) (7/30)⁰ = ( R: 1)
g) (9/5)¹ = (R: 9/5)
h) (2/3)³ = (R: 8/27)
i) (1/5)³ = (R: 1/125)
j) (1/2)² = (R: 1/4)
k) (2/3)⁴= (R: 16/81)
l) (2/5)¹ = (R: 2/5)
m) (3/11)² = (R: 9/121)
n) (9/4)⁰ = (R: 1)
o) (12/13)² = (R: 144/169)
p) (1/2)⁵ = (R: 1/32)
q) (3/7)³ = ( R: 27/343)
RAIZ QUADRADA DE NÚMEROS RACIONAIS (FRAÇÃO)
Sabemos que :
√25 = 5
√49 = 7
√25/49 = 5/7
Conclusão:
Para extrair a raiz quadrada de um número fracionário, extraem-se a raiz quadrada do numerador e a raiz quadrada do denominador.
Exemplos
a) √4/9 = 2/3
b) √1/36 = 1/6
Exercícios
1) Calcule a raiz quadrada
a) √9/16 = (R: 3/4)
b) √1/25 = (R:1/5)
c) √9/25 = (R: 3/5)
d) √16/49 = (R: 4/7)
e) √64/25 = (R: 8/5)
f) √1/9 = (R: 1/3)
g) √25/81 = (R: 5/9)
h) √49/36 = (R: 7/6)
i) √1/100 = (R: 1/10)
EXPRESSÕES COM NÚMEROS RACIONAIS
As expressões com números racionais devem ser resolvidas obedecendo à seguinte ordem de operações:
1°) Potenciação e Radiciação
2°) Multiplicação e Divisão
3°) Adição e subtração
Essas operações são realizadas eliminando :
1°) Parênteses
2°) Colchetes
3°) Chaves
Exemplos:
1) 1/5 + 4/5 x 1/3 =
1/5 + 4/15 =
3/15 + 4/15 =
7/15
2) (3/5)² + 2/5 x ½ =
9/25 + 2/10 =
18/50 + 10/50 =
= 28/50 ou 14/25
3) ( 4 + ½ ) – 1/5 : 2/3 =
( 8/2 + ½ ) – 1/5 : 2/3 =
9/2 – 1/5 : 2/3 =
9/2 – 1/5 x 3/2 =
9/2 – 3/10 =
45/10 – 3/10 =
= 42/10 ou 21/5
Exercícios
1) Calcule o valor das expressões:
a) 5/8 + ½ -2/3 = (R: 11/24)
b) 5 + 1/3 -1/10 = (R: 157/30)
c) 7/8 – ½ - ¼ = (R: 1/8)
d) 2/3 + 3 + 1/10 = (R: 113/30)
e) ½ + 1/6 x 2/3 = (R: 11/18)
f) 3/10 + 4/5 : ½ = (R: 19/10)
g) 2/3 x ¾ - 1/6 = (R: 4/12 ou 1/3)
h) 7 – ¼ + 1/7 = (R: 193/28)
i) 3 x ½ - 4/5 = (R: 7/10)
j) 7/4 – ¼ x 3/2 = ( R: 11/8)
k) ½ + 3/2 x ½ = ( R: 5/4)
l) 1/10 + 2/3 x ½ = (R: 13/30)
2) Calcule o valor da expressão:
a) 7 x ½ + (4/5)² = (R: 207/50)
b) (1/3)² + 2/5 x ½ = (R: 28/90 ) ou (14/45)
c) (1/2)² : ¾ + 5/3 = ( R: 24/12) ou (2)
d) (1/3)² x 5/2 + ½ = ( R: 14/18) ou (7/9)
e) 2/5 x ½ + ( 3/5)² = ( R: 28/50) ou (14/25)
f) (2/3)²+ 4 + 1/3 -1/2 = ( R: 77/18)
3) Calcule o valor da expressão:
a) 5/6 – ( 1/3 + 1/5 ) = ( R: 9/30) ou (3/10)
b) 2/5 x ( ¾ + 5/8) = ( R: 22/40) ou (11/20)
c) ½ : ( 2/3 + ¾ ) = ( R: 12/34) ou ( 6/17)
d) ( 1/3 + ½ ) : 5/6 = (R: 30/30) ou (1)
e) ½ . ( 2/3 + ¾ ) = ( R: 17/24)
f) ( 5/7 x 2/3 ) : 1/6 = (R: 60/21)
g) (3/2 - 2/5 ) + ( 5/4 - 2/3) = (R: 101/60)
h) 1 + (1/2 - 1/5) - (7/4 - 5/4) = (R: 16/20)
i) ( 7/8 - 5/6) + ( 8/9 - 7/9) = (R: 11/72)
4) Calcule o valor das expressões
a) ( ¾ x ½ + 2/5 ) + ¼ = (R: 41/40)
b) ( 2/3 x ¼ ) + ( 1/3 x ½ ) = (R: 4/12)
c) ( 5- ½ ) : ( 2 – 1/3) = ( R: 27/10)
d) ( 3 x 5/2 ) : ( 1/5 + 1/3 ) = (R: 225/16)
e) ( 3 x ¾ ) + ( 3 x ¼ ) = ( R: 12/4)
f) ( 3 + ½ ) x 4/5 – 3/10 = (R: 25/10)
5) Calcule o valor das expressões
a) ½ : 1/3 + ¾ x 5/9 = ( R: 69/36)
b) 3/8 x ( ½ x 4/3 + 4/3 ) = (R: 36/48)
c) ( 1/3 + ¼ ) : 5/2 + 2/3 = (R: 54/60)
d) ( ¾ + ¼ - ½ ) : 3/2 = (R: 8/11)
d) ( 1 + 1/3 )² x 9/4 + 6 = (R: 360/36)
e) 1 + (3/2)² + ( 1 + ¼ ) = (R: 18/4)
6) calcule o valor das expressões
PROBLEMAS COM NÚMEROS RACIONAIS
Os problemas com números racionais absolutos são geralmente resolvidos da seguinte forma :
1°) Encontrando o valor de uma unidade fracionária
2°) obtendo o valor correspondente da fração solicitada
exemplo
Eu tenho 60 fichas, meu irmão tem ¾ dessa quantidade. Quantas fichas tem o meu irmão ?
60 x ¾ = 180/4 = 45
R: O meu irmão tem 45 fichas
EXERCICIOS
1) Determine 2/3 de R$ 1200,00 (R: 800)
2) Numa caixa existem 80 bombons. Calcule 2/5 desses bombons. (R: 32)
3) O comprimento de uma peça de tecido é de 42 metros. Quanto medem 3/7 dessa peça ? (R: 18 m)
4) Um automóvel percorreu 3/5 de uma estrada de 600 km. Quantos quilômetros percorreu? (R: 360 km)
5) Numa viagem de 72 km, já foram percorridos ¾ . Quantos quilômetros já foram percorridos? (R : 54 km)
6) Um livro tem 240 páginas., Você estudou 5/6 do livro. Quantas paginas você estudou? (R: 200)
7) Os 2/5 de um número correspondem a 80. Qual é esse número? (R: 200)
8) Os ¾ do que possuo equivalem a R$ 900,00. Quanto possuo? (R: 1200)
9) Um time de futebol marcou 35 gols, correspondendo a 7/15 do total de gols do campeonato. Quantos gols foram marcados no campeonato? (R: 75)
10) Para encher 1/5 de um reservatório são necessários 120 litros de água. Quanto é a capacidade desse reservatório? (R: 600 litros)
11) Se 2/9 de uma estrada corresponde a 60 km, quantos quilômetros tem essa estrada?
(R: 270 km)
12) Para revestir ¾ de uma parede foram empregados 150 azulejos. Quantos azulejos são necessários para revestir toda a parede? (R: 200)
13) De um total de 240 pessoas,1/8 não gosta de futebol. Quantas pessoas gostam de futebol?
(R: 210)
14) Eu fiz uma viagem de 700 km. Os 3/7 do percurso foram feitos de automóvel e o restante de ônibus. Que distancia eu percorri de ônibus? (R: 400 km)
15) Numa prova de 40 questões um aluno errou ¼ da prova. Quantas questões ele acertou?
(R: 30 )
16) Numa classe de 45 alunos, 3/5 são meninas. Quantos meninos há nessa classe? (R: 18)
17) Um brinquedo custou R$ 152,10,. Paguei 1/6 do valor desse objeto. Quanto estou devendo?
(R: 126,75)
NÚMEROS DECIMAIS
FRAÇÃO DECIMAL
Chama-se fração decimal toda fração cujo denominador é 10 ou potência de 10 ex 10, 100, 100...
como:
a) 7/10
b) 3/100
c) 27/1000
NÚMEROS DECIMAIS
a) 7/10 = 0,7
b) 3/100 = 0,03
c) 27/1000 = 0,027
nos números decimais , a virgula separa a parte inteira da parte decimal
LEITURA DO NÚMERO DECIMAL
Para ler um, número decimal, procedemos do seguinte modo:
1°) Lêem -se os inteiros
2°) Lê-se a parte decimal, seguida da palavra:
décimos - se houver uma casa decimal
centésimos - se houver duas casas decimais
milésimos - se houver três casas decimais
exemplos:
a) 5,3 - lê-se cinco inteiros e três décimos
b) 1,34 - lê-se um inteiro e trinta e quatro centésimos
c) 12,007 - lê-se doze inteiros e sete milésimos
quando a parte inteira for zero, lê-se apenas a parte decimal
a) 0,4 - lê-se quatro décimos
b) 0,38 - lê-se trinta e oito centésimos
TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL
Para transformar uma fração decimal em número decimal, escrevemos o numerador e separamos, à direita da virgula, tantas casas quanto são os zeros do denominador
exemplos:
a) 42/10 = 4,2
b) 135/100 = 1,35
c) 135/1000 = 0,135
Quando a quantidade de algarismos do numerador não for suficiente para colocar a vírgula, acrescentamos zeros à esquerda do número.
exemplo:
a) 29/1000 = 0,029
b) 7/1000 = 0,007
EXERCÍCIOS ,
1) transforme as frações em números decimais
a) 3/10 = (R: 0,3)
b) 45/10 = (R: 4,5)
c) 517/10 = (R:51,7)
d) 2138/10 = (R: 213,8)
e) 57/100 = (R: 0,57)
f) 348/100 = (R: 3,48)
g) 1634/100 = (R: 16,34)
h) 328/ 1000 = (R: 0,328)
i) 5114 / 1000 = (R: 5,114)
j) 2856/1000 = (R: 2,856)
l) 4761 / 10000 = (R: 0,4761)
m) 15238 /10000 = (R: 1,5238)
2) transforme as frações em números decimais
a) 9 / 100 = (R: 0,09)
b) 3 / 1000 = (R: 0,003)
c) 65 /1000 = (R: 0,065)
d) 47 /1000 = (R: 0,047)
e) 9 / 10000 = (R: 0,0009)
f) 14 / 10000 = (R: 0,0014)
TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO
Procedimentos:
1) O numerador é um número decimal sem a virgula
2) O denominador é o número 1 acompanhado de tantos zeros quantos forem os algarismos do número decimal depois da vírgula.
exemplos:
a) 0,7 = 7/10
b) 8,34 / 834 /100
0,005 = 5/ 1000
EXERCÍCIOS
1) Transforme os números decimais em frações
a) 0,4 = (R: 4/10)
b) 7,3 = (R: 73/10)
c) 4,29 = (R: 429/100)
d) 0,674 = (R: 674/1000)
e) 8,436 = (R: 8436/1000)
f) 69,37 = (R: 6937/100)
g) 15,3 = (R: 153/10)
h) 0,08 = (R: 8/100)
i) 0,013 = (R: 13/1000)
j) 34,09 = (R: 3409/100)
l) 7,016 = (R: 7016/1000)
m) 138,11 = (R: 13811/100)
OPERAÇÕES COM NÚMEROS DECIMAIS
ADIÇÃO E SUBTRAÇÃO
Colocamos vírgula debaixo de vírgula e operamos como se fossem números naturais>
exemplo
1) Efetuar 2,64 + 5,19
2,64
5,19 +
----
7,83
2) Efetuar 8,42 - 5,61
8,42
5,61 -
----
2,81
Se o número de casas depois da virgula for diferente, igualamos com zeros à direita
3) Efetuar 2,7 + 5 + 0,42
2,70
5,00 +
0,42
----
8,12
4) efetuar 4,2 - 2,53
4,20
2,53 -
------
1,67
EXERCÍCIOS
1) Calcule
a) 1 + 0,75 = (R: 1,75)
b) 0,8 + 0,5 = (R: 1,3)
c) 0,5 + 0,5 = (R: 1,0)
d) 2,5 + 0,5 + 0,7 = (R: 3,7)
e) 0,5 + 0,5 + 1,9 + 3,4 = (R:6,3)
f) 5 + 0,6 + 1,2 + 15,7 = (R: 22,5)
2) Efetue as adições
a) 3,5 + 0,12 = (R: 3,62)
b) 9,1 + 0,07 = (R: 9,17)
c) 4,7 + 12,01 = (R: 16,71)
d) 2,746 + 0,92 = (R: 3,666)
e) 6 + 0,013 = (R: 6,013)
f) 4 + 0,07 + 9,1 = (R: 13,17)
g) 16.,4 + 1,03 + 0,72 = (R: 18,15)
h) 5,3 + 8,2 + 0,048 = (R: 13,548)
i) 0,45 + 4,125 + 0,001 = (R: 4,576)
3) Efetue as subtrações
a) 8,2 - 1,7 = (R: 6,5)
b) 5 - 0,74 = (R: 4,26)
c) 4,92 - 0,48 = (R: 4,44)
d) 12,3 - 1,74 = (R: 10,56)
e) 3 - 0,889 = (R: 2,111)
f) 4,329 - 2 = (R: 2,329)
g) 15,8 - 9,81 = (R: 5,99)
h) 10,1 - 2,734 = (R: 7,366)
4) Calcule o valor das expressões
a) 5 - 1,3 + 2,7 = (R: 6,4)
b) 2,1 - 1,8 + 0,13 = (R: 0,43)
c) 17,3 + 0,47 - 8 = (R: 9,77)
d) 3,25 - 1,03 - 1,18 = (R: 1,04)
e) 12,3 + 6,1 - 10,44 = (R: 7,96)
f) 7 - 5,63 + 1,625 = (R: 2,995)
5) Calcule o valor das expressões
a) (1 + 0,4) - 0,6 = (R: 0,8)
b) 0,75 + ( 0,5 - 0,2 ) = (R: 1,05)
c) ( 5 - 3,5 ) - 0,42 = (R: 1,08)
d) 45 - ( 14,2 - 8,3 ) = (R: 39,1)
e) 12 + ( 15 - 10,456) = (R: 16,544)
f) 1,503 - ( 2,35 - 2,04) = (R: 1,193)
g) ( 3,8 - 1,6) - ( 6,2 - 5,02) = (R: 1,04)
h) ( 7 + 2,75 ) - ( 0,12 + 1,04) = (R: 8,59)
MULTIPLICAÇÃO DE NÚMEROS DECIMAIS
Multiplicamos os números decimais como se fossem números naturais. O números de casas decimais do produto é igual a soma do número de casas decimais dos fatores.
Exemplo
1) efetuar 2,45 x 3,2
2,46
x3,2
-----
7,872
2) efetuar 0,27 x 0,003
x0,27
0,003
-------
0,00081
EXERCÍCIOS
1) Efetue as multiplicações
a) 2 x 1,7= (R: 3,4)
b) 0,5 x 4 = (R: 2)
c) 0,5 x 7 = (R: 3,5)
d) 0,25 x 3 = (R: 0,75)
f) 6 x 3,21 = (R: 19,26)
2) Efetue as multiplicações
a) 5,7 x 1,4 = (R: 7,98)
b) 0,42 x 0,3 = (R: 0,126)
c) 7,14 x 2,3 = (R: 16,422)
d) 14,5 x 0,5 = (R: 7,25)
e) 13,2 x 0,16 = (R 2,112)
f) 7,04 x 5 = (R:35,2)
g) 21,8 x 0,32 = (R: 6,976)
h) 3,12 x 2,81 = (R: 8,7672)
i) 2,14 x 0,008 = (R: 0,01712)
j) 4,092 x 0,003 = (R: 0,012276)
3) Determine os seguintes produtos:
a) 0,5 x 0,5 x 0,5 = (R: 0,125)
b) 3 x 1,5 x 0,12 = (R: 0,54)
c) 5 x 0,24 x 0,1 = (R: 0,120)
d) 0,2 x 0,02 x 0,002 = (R: 0,000008)
e) 0,7 x 0,8 x 2,1 = (R: 1,176)
f) 3,2 x 0,1 x 1,7 = (R: 0,544)
4) calcule o valor das expressões
a) 3 x 2,5 - 1,5 = (R: 6)
b) 2 x 1,5 + 6 = (R: 9)
c) 3,5 x 4 - 0,8 = (R: 13,2)
d) 0,8 x 4 + 1,5 = (R: 4,7)
e) 2,9 x 5 - 8,01 = (R: 6,49)
f) 1,3 x 1,3 - 1,69 = (R: 0)
MULTIPLICAÇÃO POR POTENCIA DE 10
Para multiplicar por 10, 100, 1000, etc, basta deslocar a vírgula para a direita, uma, duas, três, etc casas decimais.
exemplos
a) 3,785 x 10 = 37,85
b) 3,785 x 100 = 378,5
c) 3,785 x 1000 = 3785
d) 0,0928 x 100 = 9,28
EXERCÍCIOS
1) Efetue as multiplicações:
a) 4,723 x 10 = (R: 47,23)
b) 8,296 x 100 = (R: 829,6)
c) 73,435 x 1000 = ( R: 73435)
d) 6,49 x 1000 = (R: 6490)
e) 0,478 x 100 = (R: 478)
f) 3,08 x 1000 = (R: 3080)
g) 0,7 x 1000 = (R: 700)
h) 0,5 x 10 = (R: 5)
i) 3,7 x 1000 = (R: 3700)
j) 0,046 x 10 = (R: 0,46)
DIVISÃO
Igualamos as casas decimais do dividendo e do divisor e dividimos como se fossem números naturais.
exemplos
1) efetuar 17,568 : 7,32
Igualando as casas decimais fica : 17568 : 7320 = 2,4
2) Efetuar 12,27 : 3
Igualando as casas decimais fica: 1227 : 300 = 4,09
exercícios
1) Efetuar as divisões:
a) 38,6 : 2 = (R: 19,3)
b) 7,6 : 1,9 = (R: 4)
c) 3,5 : 0,7 = (R: 5)
d) 17,92 : 5,6 = (R: 3,2)
e) 155 : 0,25 = ( R: 620)
f) 6,996 : 5,83 = (R: 1,2)
g) 9,576 : 5,32 = (R: 1,8)
h) 2,280 : 0,05 = (R: 45,6)
i) 1,24 : 0,004 = (R: 310)
j) 7,2624 : 2,136 = (R: 3,4)
2) Calcular o valor das expressões
a) 7,2 : 2,4 + 1,7 = (R: 4,7)
b) 2,1 + 6,8 : 2 = (R: 5,5 )
c) 6,9 : 3 - 0,71 = (R: 1,59)
d) 8,36 : 2 - 1,03 = (R: 3,15)
e) 1,6 : 4 - 0,12 = (R: 0,28)
f) 8,7 - 1,5 : 0,3 = (R: 3,7)
DIVISÃO POR POTÊNCIA DE 10
Para dividir por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda, uma, duas três , etc casas decimais.
exemplos
a) 379,4 : 10 = 37,94
b) 379,4 : 100 = 3,794
c) 379,4 : 1000 = 0,3794
d) 42,5 ; 1000 = 0,0425
EXERCÍCIOS
1) Efetuar as divisões
a) 3,84 : 10 = (R: 0,384)
b) 45,61 : 10 = (R: 4,561)
c) 182,9 : 10 = ( R: 18,29)
d) 274,5 : 100 = (R: 2,745)
e) 84,34 : 100 = (R: 0,8434)
f) 1634,2 : 100 = (R: 16,342)
g) 4781,9 : 1000 = ( R: 4,7819)
h) 0,012 : 100 = (R: 0,0012)
i) 0,07 : 10 = (R: 0,007)
j) 584,36 : 1000 = (R: 0,58436)
2) efetue as divisões
a) 72 : 10² = (R: 0,72)
b) 65 : 10³ = ( R: 0,065)
c) 7,198 : 10² = (R: 0,07198)
d) 123,45 : 10⁴= (R: 0,012345)
POTENCIAÇÃO
A potenciação é uma multiplicação de fatores iguais
Exemplos:
1) (1,5)² = 1,5 x 1,5 = 2,25
2) (0,4)³ = 0,4 x 0,4 x 0,4 = 0,064
vamos lembrar que: são válidas as convenções para os expoentes um e zero.
Exemplos
1) (7,53)¹ = 7,53
2) ( 2,85)⁰ = 1
EXERCÍCIOS
1) Calcule as potências
a) ( 0,7)² = (R: 0,49)
b) (0,3) ² = (R: 0,09)
c) (1,2) ² = (R: 1,44)
d) (2,5) ² = (R: 6,25)
e) (1,7) ² = (R: 2,89)
f) (8,4) ² = (R:70,56)
g) (1,1)³ = ( R: 1,331)
h) (0,1)³ = (R: 0,001)
i) (0,15) ² = (R:0,0225)
j) (0,2)⁴= (R: 0,0016)
2) Calcule o valor das expressões
a) (1,2)³ + 1,3 = (R:3,028)
b) 20 – (3,6) ² = (R: 7,04)
c) (0,2) ² + (0,8) ² = (R: 0,68)
d) (1,5) ² - (0,3) ² = (R: 0,2025)
e) 1 – (0,9) ² = (R: 0,19)
f) 100 x (0,1)⁴ = (R: 0,01)
g) 4² : 0,5 – (1,5) ² = (R: 30,5)
h) ( 1 – 0,7) ² + ( 7 – 6)⁵ = (R: 1,09)
TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS
Para transformar uma fração em números decimais, basta dividir o numerador pelo denominador (obs o numerador é o números de cima da fração e o denominador o números debaixo)
Exemplos
transformar em números decimais as frações irredutíveis
1) 5/4 = 5 : 4 = 1,25 que será um, número decimal exato
2) 7/9 = 7 : 9 = 0,777... é uma dizima periódica simples
3) 5/6 = 5: 6 = 0,8333...... é uma dizima periódica composta
outros exemplos
a) 4,666... dízima periódica simples (período 6)
b) 2,1818....dízima periódica simples ( período 18)
c) 0,3535.... dízima periódica simples (período 35)
d) 0,8777.... dízima periódica composta (período 7 e parte não periódica 8)
e) 5,413333.... dízima periódica composta (período 3 e parte não periódica 41)
EXERCÍCIOS
1) Transforme em números decimais as frações:
a) 10/4 = (R: 2,5)
b) 4/5 = (R: 0,8)
c) 1/3 = (R: 0,333)
d) 5/3 = (R: 1,666)
e) 14/5 = (R: 2,8)
f) 1/6 = (R: 0,16)
g) 2/11 = (R: 0,1818)
h) 43/99 = (R: 0,4343)
i) 8/3 = (R: 2,666)
2) Transforme as frações decimais em números decimais :
a) 9/10 = (R: 0,9)
b) 57/10 = (R: 5,7)
c) 815/10 = (R: 81,5)
d) 3/100 = (R: 0,03)
e) 74/100 = (R: 0,74)
f) 2357/1000 = (R: 2,357)
g) 7/1000 = (R: 0,007)
h) 15/10000 = (R: 0,0015)
i) 4782/10000 = (R: 0,4782)
GEOMETRIA INTUITIVA
89 Comments:
Olá!
Muito boa a sua iniciativa! Tem teoria, simples, passo a passo, e bastante prática.
Até pessoas que tem dificuldade com matemática, como eu, podem aprender sozinhas aqui.
Continue estas postagens! Tenho certeza que muita gente irá se beneficiar com isto.
Olá novamente.
Continuo estudando pelo seu blog! Se me permite, tenho uma sugestão, coloque, no fim de cada post, as respostas dos exercícios. Eu fiz alguns e senti necessidade destas para verificar se não tinha errado nada.
Até breve.
Oi amigo!!! Gostei do seu conteudo peguei algumas coisas pra trabalhar com uns alunos da aula de reforço!!!
Valeu!!e obrigada!!
Olá! td bem?
Adorei o seu blog. Parabéns!
Vc poderia postar as respostas?
Obrigada
Parabéns!!!!!!!!!!!!!!!!um ótimo conteúdo!"!!!!!!!!!!!!!!!!!!!me ajudou com a minha filhota!!!!!!!!! brigadão!
jrfsfbjsegfkbefbeafeab
Cara seu blog me ajudou pra caralho mas tem uma coisa,cole as respostas em todas as questões para ficar mais fácil de se aprender,mas a iniciativa é muito boa,continue assim!!
Tinha um trabalho e fiz pelo seu blog...
Valeu!!!!!!
Parabéns, excelente trabalho!
Muito legal!! coisas simples,reduzidas e mas práticas.Encontrei e solucionei o que eu queria.obrigado...
Olá, amigo. Parabéns por sua iniciativa, excelente conteúdo. Era tudo o que eu precisava. Obrigada e continue, por favor. Que Deus te abençoe e te guarde.
PARABÉNS amigo!!Simples e descomplicado.Estava há mais de 6 anos sem ver essa matéria, agora farei um concurso e em poucos minutos compreendi tudo.Melhor do que olhar em livros cheios de conteúdo que só enrolam.Abraços.
parabens mestre!
parabens mestre!
parabens mestre!
ufa adorei esse site eu aprendo muito nele dei um grande passo na escola em matemática.
Coloque, no fim de cada post, as respostas dos exercícios sente dificuldade em alguns e não sabia se tava certo.thau até depois
Muito bommmmmm.....voce é otimo...
Muito bommmmmm.....voce é otimo...
muito bom,ou aprende oui nao entende mais è otimo.abraços
Este comentário foi removido pelo autor.
Obrigada otimo conteudo ...me ajudou bastante
Amei esse site, no dia 15/11 irei fazer uma prova e nesse site tem tudo que eu preciso para fazer uma boa prova, agradeço !!
Poxa muito obrigado, seu blog é realmente muito bom
Parabens Chico Sobreira
Muito bom mesmo , me ajudou bastante,
GOSTEI MUITO,EU POSSO AGORA
PODER TER AULAS DE REFORÇO EM CASA.
OBG POR SUA DEDICAÇÃO.
nossa seu blog me ajudou muito, pois faz tanto tempo que parei os estudos havia coisas que nem me lembrava mais.valeu
nossa o blog é d+ me ajudou muiito ...
Matéria muito boa, me ajudou bastante! Recomendado!
Eu nunca vi nada tão explicado assim. To boba!! Obrigada mesmo. Sei q esse é o básico, mas nem esse básico eu sabia de verdade.
Eu adorei esse site, a matemática de maneira simples e acessível ao internauta que precisa elaborar exercícios para os seus alunos. Parabéns!!!
valeu mesmo este blog é demais
me ajudou muito agradeço
ao dono............
muito bom facil e prático. parabéns!
Olá! depois de gastar tanto dinheiro com video aulas entre outros.Encontrei vocês.Extamentente o que estava procurando.Parabéns!!! Continue trabalhando, este site é maravilhoso!!!
muito legal eu to na quarta serie mais a prof ja ensina isso
valeu!!!!
Sua teoria é ótima, mas em alguns exercícios a resposta não bateu, mas mesmo assim valeu pela iniciativa!
entrei na faculdade de arquitetura e estou encontrando muita dificuldade na matematica basica, por esta tanto tempo parada.. seu blog foi a minha savalção.. rs
Obrigada
Fui estudar diereito para não ter que aplicar matemática. Olhha minha surpresa ao ter que realizar um formal de partilha... apareceu a tal de fração. Foi muito bom descobrir o seu Blog.
Luis Alberto
como e que responde 2,16=o,4-1,6=
adorei!!!vou fazer uma prova amanhã e ainda não tinha entendido direito a matéria e em minutos vc me explicou o q minha professora demorou várias aulas para me explicar (he... não conseguiu)!!!!
Muito bom mais ajudou mt na matemática que eu tinha muita dificuldade continue com essas postagens agora com essas explicações passei em matemática com 10
Nossa perfeito, deixo aqui meus parabéns, pois pude utilizar para exemplificar varias questões aos meus alunos. Continue assim, se possível passar algo como logaritmos, raiz quadrada, ou achar números decimais com rais; exemplo 6,25raiz de 3 (6,25√3). Forte abraço.
Meus parabéns, seu Blog esta de mais, pude passar e exemplificar aos meus alunos utilizando seus exemplos. Parabéns, se for possível deixe exemplos 6,25√3)
Po cara voce ke posto aee esses exemplos de Operaçao de Numeros Fraçionais e Decimais po ajudo muito eu nao conseguia entender mas quando eu olhei que intendi como era com os exemplos eu aprendir e eu passei de ano vlw aee cara Abraços !!!
muito obrigado!!me ajudou muito ,e e muito explicado,muito obrigada mesmo.
muito obrigada !! me ajudou muito ...
muito obrigado!!me ajudou muito ,e e muito explicado,muito obrigada mesmo.
oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.
oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.
oi eu sou suellen de belem PA, gostei muito da matéria agora toda vez que estiver em duvida volto aqui...Voce poderia botar as respostas.
vai caca nem essa resposta que eu quero
Ainda bem que existem pessoas bem intencionadas como vc ,que pensa no seu semelhante. gostei mto de sua iniciativa pensando no seu semelhante, com certeza ,ganhará um pedacinho do céu. Deus te abençoe continue assim!!!m
juliana guarapuava
Ainda bem que existem pessoas bem intencionadas como vc que pensa no seu semelhante. Otima iniciativa, continue assim!!
Seu blog me ajuda muito. Parabens.
Seu blog esta me ajudando muito para reelembrar o conteudo, porem tive duvida no exercicio de adiçao de fraçoes do item b: como chegou no resultado de 3/4+1/2= 5/4 e o
e c) 2/4+2/3=14/12 meu mmc nao chegou a este resultado, a alguma regra que eu tenha esquecido? meu e mail é de.cerejinha@terra.com.br
Seu blog esta me ajudando muito para reelembrar o conteudo, porem tive duvida no exercicio de adiçao de fraçoes do item b: como chegou no resultado de 3/4+1/2= 5/4 e o
e c) 2/4+2/3=14/12 meu mmc nao chegou a este resultado, a alguma regra que eu tenha esquecido? meu e mail é de.cerejinha@terra.com.br
Seu blog me ajudou muito a reelembrar esta matéria para prestar concurso. Muito Obrigado!
Obrigado meu querido!
Graças a vc pude ajudar minha filha com o dever de casa!
Vc poderia me ajudar com estas questões:
(7/5)+(1,2)=
(-1/3)+(+2/5)=
(+1/2)-(+3/5)-(0,8)=
obs:. estamos nos confundindo um pouco com a sinalização!
Anderson M.
Este comentário foi removido pelo autor.
Adorei o blog
mas nao me ajudou porque eu precisava de problemas decimais
Tipo: Maria tem...
Parabéns, divulgar o conhecimento com qualidade e acessibilidade é uma dádiva. Me foi super útil, OBRIGADO !
Parabéns, divulgar o conhecimento com qualidade e acessibilidade é uma dádiva. Me foi super útil, OBRIGADO !
Olá
Adorei o seu blog é muito bom me ajudou muito,só peço que atente pois ha alguns exercícios que estão com as respostas incorretas,se você puder corrigi-los,pois atrapalha nos estudos principalmente quem tem dificuldade pode achar que esta fazendo errado quando na verdade é o exercício que esta errado.
Segue os que eu vi,não sei se ha outros:
Transformação de fração em número decimal :
Exercício 1 - F e G estão incorretos.
Multiplicação de números decimais:
Exercício 3 - B,E,F estão incorretos.
Potenciação:
Exercício 1 - I está incorreto.
DE qualquer forma PARABÉNS pelo Blog...
Abs
aplausos para você.
aplausos para você.
Adoramos... ajudou a estudar pra prova do militar.
Adoramos ajudou a minha filha a estudar pra prova do militar.
Parabens pela iniciativa.....é útil para minha filha e pra mim tbm.....obrigada!
valeu pela ajuda, porém, varias pessoas pediram para por as respostas, e, você pôs, mas poderia colocar em um tipo de gabarito no final do post ao invés de na frente do exercício???? valeu brigadão tchau ^^
adorei demais esse blog, tenho certeza que vai me ajudar muito no concurso que almejo fazer.
queria saber se existe mas conteúdos desses, para estudar? parabens..........
bom demais relembrei muita coisa que eu tinha esquecido
Gostei muito desas expressões numéricas pois tira todas as nossas duvidas
Muito bom seu blog! Estou estudando por ele para um concurso!
Valeu!
Muito bom seu blog! Estou estudando por ele para um concurso!
Valeu!
Valeu irmão, ótimas aulas. Simples e fácil.
Abraço!
Muito legal me ajudou bastante :¬)
;¬)
Continua postando comentarios;)
não existe mais nenhuma duvida, muito bem explicado!
Ótimo , muito obrigada mesmo!
Ótimo , muito obrigada mesmo!
Ótimo , muito obrigada mesmo!
Excelente
parabens pelo seu don,que vc poça continuar postando bastante coisas ...final do ano quero fazer uma boa prova do enen ...estou relembrando algumas coisas quero ser professora tbem .... bjus
O melhor blog de ensino que ja vi parabéns muito bem elaborado
Entender nao eh difícil,a forma como se ensina as vezes complica..Parabéns por descomplicar e esclarecer de forma simples mostrando que matemática não é bicho papao como se pensa.
nossa minha filha n conseguiu acompanhar tudo mas tb né ... essa n presta tençao em nada posso fazer o q. bom, o site é otimo entendi tudinho não tudo tudo tudo pq tinha muita coisa mas é otimo parabens
Muito bom!!! Seu blog já faz parte do meu favoritos... aprendi coisa que levei anos de escola e ainda tinha duvidas... simples, didático e descomplicado. Parabéns!!!
Muito obrigada pelo blog! está me ajudando muito para que eu possa ajudar meu filho de 10 anos. Parabéns!
Eu acho que eles podiam colocar a matéria de geometria junto com essa matéria vc não acha
Obrigada
Postar um comentário
<< Home